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1. Exascale challenges in large dataset analysis 

Exascale platforms are expected to perform large-scale, computationally expensive simulations at a rate 
never seen before. However, this new capability of performing longer simulations will present new 
challenges for scientists who have to deal with the analysis, sorting, and selection of scientifically 
meaningful results from the massive amounts of data collected. To make the situation even more 
challenging, data can be located across distributed nodes of the exascale platform.  Techniques are needed 
to analyze and characterize the large-scale, distributed scientific datasets. However, state-of-the-art 
techniques such as clustering require comparing data with each other many times, in an iterative process.  
When speaking about massive datasets distributed across a large number of nodes, as they could be in 
exascale systems, even a small number of comparisons have a great impact on the efficiency of the 
analysis algorithm. 

2. Envisioned efforts and applicability 

To address this incumbent problem, these key research questions are of great priority:   

• Can we intrinsically encode data in large and distributed datasets, so that we can more effectively 
capture their semantic properties, while syntactically redefining the data structures for the sake of 
their analysis accuracy and scalability? 

• Can we redesign linear-in-complexity algorithms for analyzing the encoded datasets, so that we can 
extract relevant scientific conclusions from the complete dataset? 

• Can we integrate these algorithms into emerging distributed paradigms such as the MapReduce 
paradigm and implement them into MapReduce middleware packages, such as Hadoop and 
MapReduce-MPI? 

• Can we measure scalable performance and accurate results for relevant scientific datasets, e.g., high-
throughput protein-ligand docking datasets and geographical datasets? 

We believe that these questions can be effectively answered for petascale systems today and exascale 
systems tomorrow in diverse scientific fields dealing with diverse datasets. The datasets can range from 
3D molecular structures generated in e.g., high-throughput molecular dynamics (MD) simulations, such 
as the millions of peptide conformations in a folding simulation, or ligand conformations docked into a 
protein pocket in protein-ligand docking simulations, to geographical data structures for e.g., indexing 
methods for GIS Geographical Information Systems.  Our preliminary results of a novel approach we 
present in this white paper, which were previously published in [1, 2], support our claim. 

3. Proposed approach, its uniqueness, and maturity  

In our preliminary work, we first provided positive answers to the questions above for a large dataset of 
protein-ligand conformations in drug design and studied the effectiveness of our approach, to achieve 
both accuracy and scalability on petascale architectures. A crucial step in the protein-ligand docking 
process is the accurate prediction of the binding geometry of a ligand from an ensemble of docked ligand 
conformations, which requires the evaluation of numerous possible predicted protein-ligand geometries in 
the order of billions of conformations [3, 4]. In evaluating the ensemble of possible protein-ligand binding 
geometries, scientists typically rely on the traditional scoring approach, based on a molecular mechanics 
energy function. We observed how conformations scoring minimum energy over very large datasets 
produced by billions of docking attempts might be significantly different from the experimentally 
observed conformation. On the other hand, if we compare the geometry of each ligand conformation in 
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the large dataset, we can find several conformations that are close to the near-native conformation, but 
would not necessary score the lowest energy [5]. Powerful hierarchical clustering methods are able to 
select near-native poses with higher accuracy, but unfortunately, they scale poorly for very large datasets  
[5]. However, in [1], we first showed how we can encode the geometry of each three-dimensional (3D) 
ligand conformation in a dataset of conformations into a single 3D point in space in a decoupled and 
completely distributed way, by projecting the 3D atoms of each conformation on each of the three 2D 
planes (x,y), (y,z), and (z,x) and computing the best-fit linear regression line of the 2D points. Secondly, 
we presented how we can redesign the clustering algorithm of the 3D ligand conformations into a density 
search that scales linearly when we use an octree representation of the space. Thirdly, we showed how we 
can integrate the density search into the MapReduce paradigm and implement it into Hadoop1, one of the 
most utilized MapReduce implementations. Last but not least, we measured scalable performance and 
accurate results for our approach on the Gordon supercomputer at the San Diego Supercomputer Center 
(SDSC), on which, when using large datasets of billions of ligands, as the number of cores in the 
computer system increases, the execution time of our algorithm decreases linearly from 5 hours to 20 
minutes, showing a performance improvement of nearly two orders of magnitude. 

The proposed work is far from being completed. Research directions to be pursued by the investigator and 
her group include: (1) encoding a more diverse set of properties than the geometries of the molecules in 
our encoding method, e.g., to include not only the geometry but also the location of the ligand into the 
protein pocket or the presence of specific atoms or charges in a molecule; (2) extending our encoding 
approach to a broader type of dataset produced by MD simulations, e.g., protein-protein binding 
geometries, as well as protein conformations, for protein structure prediction and protein folding; (3) 
extending our encoding approach to a completely different research field and dataset, e.g., large 
geographical datasets; (4) further searching for alternate algorithms for data comparison and for their 
efficient integration into distributed frameworks; and (5) studying accuracy and performance of the 
overall approach on larger and larger computing platforms, while waiting for exascale platforms to 
become a reality for day-to-day scientific simulations. When exascale systems arrive on the scene, we 
will be ready to analyze scientists’ data! 
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  We	
  recently	
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  the	
  implementation	
  of	
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  algorithm	
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